

TEULAMIFIN B, A NEO-CLERODANE DITERPENOID FROM *TEUCRIUM LAMIIFOLIUM* AND *T. POLIUM*

PETER Y. MALAKOV, IVA M. BONEVA,* GEORGI Y. PAPANOV and STEFAN L. SPASSOV†

Department of Organic Chemistry, Plovdiv University, 4000 Plovdiv, *Department of Chemistry, Higher Institute of Agriculture 'V. Kolarov', 4000 Plovdiv, Bulgaria, †Institute of Organic Chemistry Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

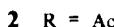
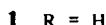
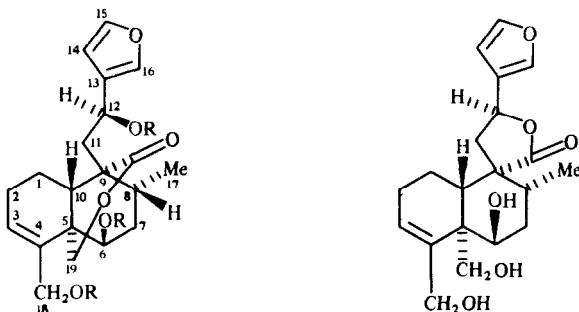
(Received 11 May 1987)

Key Word Index—*Teucrimum lamifolium*, *Teucrimum polium*, Labiateae, neo-clerodane derivatives, teulamifin B, 19-deacetylteuscorodol, teucroxide

Abstract—From the aerial parts of *Teucrimum lamifolium* and *T. polium*, a neo-clerodane diterpenoid, teulamifin B has been isolated, besides the previously known diterpenoids 19-deacetylteuscorodol and teucroxide. The structure of teulamifin B[15,16-epoxy-6β,12S,18-trihydroxy-neo-cleroda-3,13(16),14-trien-20,19-olide] was established by chemical and spectroscopic means and by correlation with 19-deacetylteuscorodol

INTRODUCTION

In previous communications, we reported the isolation of teuscorodin, teuflin, montanin C, 19-acetylgnaphalin, isoteuflidin [1] and 12-epiteupolin II [2] as diterpenoid constituents of *T. lamifolium*. In this communication, we report the isolation and structural determination of a new diterpenoid, teulamifin B(1) which has been isolated from the same plant as well as from *T. polium* (var. *polium*), besides the previously described diterpenoids 19-deacetylteuscorodol [3] and teucroxide [4]




RESULTS AND DISCUSSION

Teulamifin B(1) had a molecular formula of $C_{20}H_{26}O_6$, from the elemental analysis and mass spectroscopy. Its IR spectrum was consistent with the presence of a furan ring (3140, 1500, 875 cm^{-1}), a δ -lactone ring (1700 cm^{-1}) and hydroxyl groups (3430, 3300 cm^{-1}). Its 1H NMR and ^{13}C NMR spectra (Tables 1 and 2) supported the structure 1. However its mp (207–209°) as well as some of the ^{13}C NMR parameters were markedly different from those recently reported [3] for teubotrin (mp 110–114°), a diterpenoid isolated from *T. botrys* and possessing the same structure, with C-12 stereochemistry unknown.

As expected, the IR, 1H NMR and mass spectral parameters of teulamifin B(1) and teubotrin [3] were very similar. Significant differences in the ^{13}C NMR chemical shifts (1.5–3 ppm) were observed for the carbon adjacent to the C-12 chiral centre as well as for the olefinic C-3 and C-4.

A final proof that teulamifin B(1) has the structure and absolute configuration depicted in formula 1 was obtained by sodium hydroxide treatment [5] of 19-deacetylteuscorodol (3) [3] which yielded a compound identical in all respects (mp, mmp, $[\alpha]_D$, IR, 1H NMR and MS) with natural teulamifin B.

Acetylation of teulamifin B(1) yielded the triacetate (2) which showed very similar spectral parameters to those of teubotrin triacetate [3].

EXPERIMENTAL

Mps uncorr, 1H NMR and ^{13}C NMR at 250.1 MHz and 50 MHz, respectively with TMS as int standard. Plant materials of *T. lamifolium* were collected in July 1984 near Malko Tarnovo, while those of *T. polium* were collected in July 1982 near Plovdiv.

Extraction and isolation of the diterpenoids from T. lamifolium. Dried and finely powdered *T. lamifolium* aerial parts (1.28 kg) were extracted as described in previous papers [1, 2]. The $CHCl_3$ extract (6 g) was chromatographed over silica gel column (110 g, Merck N 7734, deactivated with 10% H_2O). Elution with CH_2Cl_2 , CH_2Cl_2 –MeOH mixture and CH_2Cl_2 –MeOH (99:1) gave teulamifin B(1), (100 mg) and 19-deacetylteuscorodol (3) (210 mg) [3]. Further elution with CH_2Cl_2 –MeOH (97:3) yielded teucroxide (240 mg) [4]. Teulamifin B(1) on recrystallization from Me_2CO –petrol showed mp 207–209°, $[\alpha]_D^{20} -49.3^\circ$ (Me_2CO , c 0.23), IR $\nu_{max}^{KBr} cm^{-1}$ 3430, 3300, 2980, 2940, 1700, 1480, 1180, 1120, 1040, 875 EIMS (direct inlet 70 eV, m/z (rel int.): 362 [$M]^+$ (60), 344 [$M - H_2O]^+$ (15), 326 [$M - 2H_2O]^+$ (10), 314 (8), 296, (6), 95, (80), 91, (70), 41,

(100). Found. C, 66.00, H, 7.38. $C_{20}H_{26}O_6$ requires. C, 66.28, H, 7.23%. 1H NMR and ^{13}C NMR see Table 1 and 2

Isolation of teulamifin B(1) from T. polium. The chromatographic fractions obtained before elution of montanin E[6] were evaporated to dryness and the residue (320 mg) was chromatographed on a silica gel column (Merck No. 7734, deactivated with 10% H_2O , 160 g), eluted with $CHCl_3$ -MeOH (98:2) to give teulamifin B (90 mg) and 19-deacetylteuscoradol (38 mg) [3].

Acetylation of teulamifin B(1). Ac_2O -pyridine treatment of 1

(38 mg) in the usual manner gave the triacetate (2) (38 mg), as a colourless resin. IR $\nu_{max}^{CHCl_3}$ cm^{-1} 2940, 1735 (br), 1450, 1380, 1250 (br), 1020, 880 1H NMR see Table 1. EIMS (70 eV), m/z (rel int) (direct inlet) 488 [$M]^+$ (3), 446 [$M - C_2H_2O$] $^+$ (20), 428 (30), 326 (15), 43 [$MeCOO$] $^+$ (100).

Preparation of teulamifin B(1) from 19-deacetylteuscoradol (3). 19-Deacetylteuscoradol (3), (70 mg) dissolved in MeOH (4 ml) was added to a 2% soln of NaOH and the mixture was refluxed for 2 hr and then extracted with CH_2Cl_2 . The extract was

Table 1 1H NMR spectral data of compounds 1, 2 and 3 (TMS as int standard)*

H	1 (Pyridine- d_5) \ddagger	1 ($CDCl_3$) \ddagger	2 ($CDCl_3$)	3 (Pyridine- d_5)
1 α	1.56 <i>m</i>		1.48 <i>m</i>	2.15 <i>m</i>
1 β	2.84 <i>m</i>		2.40 <i>m</i> \ddagger	1.93 <i>m</i> \ddagger
2 α	2.12 <i>m</i> \ddagger		2.05 <i>m</i> \ddagger	2.26 <i>m</i>
2 β	2.32 <i>m</i>		2.20 <i>m</i>	2.26 <i>m</i>
3	5.93 <i>m</i>	6.01 <i>t</i>	5.96 <i>m</i>	6.02 <i>t</i>
6 α	4.75 <i>m</i>	4.29 <i>m</i>	5.17 <i>t</i>	5.09 <i>m</i> \ddagger
7 α	1.97 <i>m</i>		1.70 <i>m</i>	2.60 <i>m</i> \ddagger
7 β	2.12 <i>m</i>		1.70 <i>m</i>	1.93 <i>m</i> \ddagger
8 β	3.07 <i>m</i>		2.22 <i>dd</i>	2.60 <i>m</i> \ddagger
10 β	3.55 <i>dd</i>	2.79 <i>dd</i>	2.40 <i>m</i> \ddagger	2.76 <i>dd</i>
11A	2.70 <i>dd</i>	2.24 <i>dd</i>	2.40 <i>m</i> \ddagger	2.50 <i>d</i>
11B	2.96 <i>dd</i>		2.62 <i>dd</i>	2.50 <i>d</i>
12	5.32 <i>dd</i>	4.92 <i>dd</i>	6.06 <i>dd</i>	5.59 <i>t</i>
14	6.75 <i>m</i>	6.45 <i>m</i>	6.44 <i>t</i>	6.62 <i>m</i>
15	7.63 <i>t</i>	7.39 <i>m</i>	7.40 <i>t</i>	7.69 <i>t</i>
16	7.78 <i>m</i>	7.42 <i>m</i>	7.46 <i>m</i>	7.84 <i>m</i>
Me-17	1.04 <i>d</i>	0.87 <i>d</i>	0.87 <i>d</i>	1.13 <i>d</i>
18A	4.76 <i>s</i>	4.11 <i>br s</i>	4.24 <i>d</i>	4.78 <i>d</i>
18B	4.76 <i>s</i>	4.11 <i>br s</i>	4.52 <i>d</i>	4.96 <i>d</i>
19A	4.41 <i>d</i>	4.21 <i>d</i>	4.30 <i>d</i>	4.42 <i>d</i>
19B	4.71 <i>d</i>	4.39 <i>d</i>	4.45 <i>d</i>	5.04 <i>d</i>
OAc			2.05 <i>s</i> (6H) 2.08 (3H)	
1 α , 10 β	13.0	13.4		12.6
1 β , 10 β	2.2	2.7		2.5
2 α , 3	3.8	3.6		3.3
2 β , 3	<1	3.6		3.3
6 α , 7 α			2.6	
6 α , 7 β	-		2.6	
7 α , 8 β	12.8	- -	13.0	- -
7 β , 8 β	4.2		4.2	-
8 β , 17	6.7		6.7	6.2
11A, 11B	15.8	15.5	16.2	- -
11A, 12	9.7	9.4	9.8	8.8
11B, 12	2.3	2.3	3.5	8.8
14, 15	1.4		1.6	1.5
15, 16	1.4		1.6	1.5
18A, 18B			12.6	11.3
19A, 19B	12.0	12.2	12.8	11.1

* Spectral parameters were obtained by first order approximation. All assignments were confirmed by double resonance experiments.

\ddagger The spectrum of 1 in pyridine- d_5 is better resolved, some parameters in $CDCl_3$ are reported for comparison purposes with teubotrin [4].

After treatment of 1 with trichloroacetylisocyanate in $CDCl_3$ the $>NH$ singlets of the resulting tricarbamate were observed at δ 8.47, 8.59 and 8.96 ppm. The corresponding signals for the tricarbamate of 3 (in $CDCl_3$) were at 8.53, 8.57 and 8.81 ppm.

\ddagger Overlapped signal.

Table 2 ^{13}C NMR chemical shifts of compound (in pyridine- d_5)

C	δ	C	δ
1	20.9(2)*	11	37.9(2)
2	25.6(2)	12	62.1(1)
3	129.4(1)	13	132.6(0)
4	140.8(0)	14	109.4(1)
5	42.0(0)	15	143.4(1)
6	70.0(1)	16	138.6(1)
7	37.0(2)	17	16.8(3)
8	30.9(1)	18	64.5(2)
9	50.4(0)	19	75.5(2)
10	36.9(1)	20	173.5(0)

*Number of attached protons determined by the DEPT method

washed with H_2O , dried over Na_2SO_4 , recrystallized from Me_2CO -petrol to yield pure **1**

REFERENCES

- 1 Boneva, I., Malakov, P and Papanov, G (1987) *Travaux Scient Univ Plovdiv, Chim* (in press)
- 2 Boneva, I., Malakov, P and Papanov, G (1987) *Phytochemistry* (in press)
- 3 De La Torre, M., Fernandez-Gadea, F., Michavila, A., Rodriguez, B., Piozzi, F and Savona, G (1986) *Phytochemistry* **25**, 2385
- 4 Garcia-Alvarez, M., Luckacs, G., Neszmelyi, A., Piozzi, F., Rodriguez, B and Savona, G (1983) *J Org Chem* **48**, 5123
- 5 Malakov, P and Papanov, G (1987) *Phytochemistry* (in press)
- 6 Papanov, G and Malakov, P (1983) *Phytochemistry* **22**, 2787